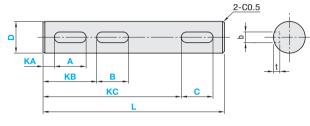

Arbres rotatifs Tolérance D h9 (étiré à froid) / h7 (meulé) / g6 (meulé)

Droit avec rainure



	Type	Tolérance D	Matériau Matériau	Traitement de surface				
	SFMKR	1.0	EN 1.1191	Oxydé noir				
1	PSFMKR	h9 (étiré à froid)	équiv.	Placage autocatalytique au nickel				
	SSFMKR	(Gui G a Hola)	EN 1.4301 équiv.	-				
	SFHKR		EN 1.1191	Oxydé noir				
2	PSFHKR	h7 (meulé)	équiv.	Placage autocatalytique au nickel				
	SSFHKR		EN 1.4301 équiv.	-				
	SFGKR		EN 1.1191	Oxydé noir				
3	PSFGKR	g6 (meulé)	équiv.	Placage autocatalytique au nickel				
	SSFGKR		EN 1.4301 équiv.	-				

La rugosité de surface de la pièce D pour h9 (étiré à froid) est
 √. La rugosité de surface pour h7 (meulé) et pour g6 (meulé) est
 √.
 Ell est possible de spécifier un nombre de logements de clavette (max. 3).

	50	14	-0.04	3 5.5		
	C Lorsque KA=	D, KA+A=L, KB+	B=L, KC+C=L,	la forme du logeme	nt de clavette est com	me ci-dessou
		-	\supset —	\bigcirc	\rightleftharpoons	
Circularité et linéarité						
1			Circula	rité de la piè	ce D	
 - - - - - - - - - -		-		<u>.</u>		
			Sup.	ou inférieur	Circulari	té M
			5	13	0.004	ļ
0.01/	/100		13	20	0.005	5
L			20	40	0.008	6
Ne s'applique pas à h9	(átirá à fra	d)	40	50	0.007	7
(1) Ne s applique pas a lis	(eure a mo	u). (Ne s'a	oplique pas	à h9 (étiré à	froid).
Perpendicularité		`				,
ar el peridicularite			Tolérand	es de L et aut	res dimensions	
		ī -	Dime	nsion	Tolérar	
 	+-		Sup.	ou inférieur	Tolerai	ice
-	—,	, [2	6	±0,1	
[−]			6	30	±0.2	
⊥ 0.05			30	120	±0.3	
			120	400	±0.5	
Ne s'applique pas à h9	(étiré à froi	d).	400	800	±0.8	

1h9 (étiré à froid)

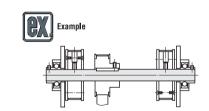
D'''									
Référenc	e piece			Logement de clavette 1	Logement de clavette ②	Logement de clavette 3			
Type		Dh9	L=Incrément de 0.1mm	KA, A	KB, B	KC, C			
Туре	Tolérance			Incrément de 1mm					
	6	0 -0.030	20.0~300.0						
SFMKR	8	0	20.0~400.0]					
	10	-0.036	20.0~500.0	KA+A≤L	KB+B≤L	KC+C≤L			
PSFMKR	12	0	30.0~600.0	TOTTALE	RBIBSE	ROTOSE			
	15	-0.043	30.0~700.0	KA≥0	KB≥0	KC≥0			
SSFMKR	20	0	40.0~800.0						
(D6 n'est pas disponible pour le type	25	-0.052	50.0~800.0	b≤A≤100	b≤B≤100	b≤C≤100			
SSFMKR.)	30	-0.032	60.0~800.0						
	35	0	70.0800.0	1					

2h7 (meulé)

Référe	nce pièce			Logement de clavette ①	Logement de clavette ②	Logement de clavette 3				
Туре		Dh7	L=Incrément de 0.1mm	KA, A	KB, B	KC, C				
Type		Tolérance		Incrément de 1mm						
	6	0 -0.012	20.0~300.0							
	8	0	20.0~400.0							
	10	0.015	20.0~500.0							
SFHKR	12	0	30.0~600.0							
Similar	15	-0.018	30.0~700.0	KA+A≤L	KB+B≤L	KC+C≤L				
PSFHKR	17	0.010	40.0~800.0	KA≥0	KB≥0	KC≥0				
PSFRKK	20	0	40.0~800.0	KAZU	KP50	KC20				
COELIKE	25	-0.021	50.0~800.0	b≤A≤100	b≤B≤100	b≤C≤100				
SSFHKR	30	-0.021	60.0~800.0							
	35	0	70.0~800.0							
	40	0 -0.025	80.0~800.0							
	50	-0.023	100.0~800.0							

3g6 (meulé)

Référenc	e pièce			Logement de clavette 1	Logement de clavette ②	Logement de clavette 3				
Time		Dg6	L=Incrément de 0.1mm	KA, A	KB, B	KC, C				
Туре	Tolérance			Incrément de 1mm						
	6	-0.004 -0.012	20.0~300.0							
	8	-0.005	20.0~400.0							
	10	-0.014	20.0~500.0							
	12		30.0~600.0							
CECKB	13		30.0~600.0							
SFGKR	15	-0.006	30.0~700.0	KA+A≤L KA≥0						
	16	-0.017	30.0~800.0		KB+B≤L	KC+C≤L				
PSFGKR	17		40.0~800.0		KB≥0	KC≥0				
	18		40.0~800.0	KAZU	KDSO	KC20				
SSFGKR	20		40.0~800.0	b≤A≤100	b≤B≤100	b≤C≤100				
(D13, 16, 18 et 22 ne sont pas disponibles	22	-0.007	40.0~800.0							
pour le type SSFGKR.)	25	-0.020	50.0~800.0							
	30		60.0~800.0							
	35	0.000	70.0~800.0							
	40	-0.009 -0.025	80.0~800.0							
	50	-0.023	100.0~800.0							


Logement de clavette ① Logement de clavette ② Logement de clavette ③

Ordering Référen-Example ce pièce KA - A KB - B KC - C

1)h9 (étiré à froid)

Type	SFMKR (EN 1.1191 équiv., oxydé noir)								PSFMKR (EN 1.1191 équiv., placage autocatalytique au nickel)							SSFMKR (EN 1.4301 équiv.)								
_	L mini.	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1	L mini.	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1	L mini.	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1
D	1	5	5	3	5	3	3	5	5	5	5	5	5		5	5	1				5	3		5
	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0
6						-	-	-						-	-	-	-	-	-	-	-	-	-	-
8							-	-							-	-							-	-
10								-								-								-
12								-								-								-
15																								
20																								
25																								
30	-								-								-							
35	-								-								-							
@. -	,																							

②h7	h7 (meulé) ③g6 (meulé)																							
Type		SFHKF	, SFGI	KR (EN	1.1191 é	quiv., ox	ydé noir)	PSFHK	R, PSF	GKR (EN	1.1191 éq	uiv., placa	ge autoca	talytique a	u nickel)		SSFHKR, SSFGKR (EN 1.4301 équiv.)						
D	L mini. 50.0	L50.1 100.0	L100.1 150.0	L150.1 200.0	L200.1 300.0	L300.1 , 400.0	L400.1 600.0	L600.1 800.0	L mini. 50.0	L50.1 100.0	2	L150.1 200.0	L200.1 300.0	L300.1 400.0	L400.1 600.0	L600.1 800.0	L mini. 50.0	L50.1 100.0	L100.1 150.0	L150.1 200.0	L200.1 300.0	L300.1 400.0	L400.1 600.0	L600.1 800.0
6						-	-	-						-	-	-						-	-	-
8							-	-							-	-							-	-
10								-								-								-
12 13								-								-								-
13								-								-	-	-	-	-	-	-	-	-
15																								
16																	-	-	-	-	-	-	-	-
17																								
18																	-	-	-	-	-	-	-	-
20 22																								
																	-	-	-	-	-	-	-	-
25 30																								
30	-								-								-							
35	-								-								-							
40	-								-								-							
50	-								-								-							

	Méplat de vis de serrage	2 méplats de vis de serrage (angle spécifié)	Chemin de cames fendu	Méplats	Tolérance de la dimension L		
Modifica- tions	1 méplat de vis de serrage : FC H FC G 2 méplats de vis de serrage : WFC H RTC J V W		<u>d</u> <u>UC</u> <u>e</u> 1		LKC L		
Code	FC, WFC	SFC	UC	SC	LKC		
Spéc.	FC : ajoute 1 méplat de vis de serrage. Note de manuel FC10-G3 WFC : ajoute 2 méplats de vis de serrage. Note 3 manuel 2 méplats de vis de serrage. Note 3 manuel 2 méplats de vis de serrage. Note 3 manuel 2 méplats de vis de serage et logements FC, G, VISO Les méplats de vis de serage et logements D	Ajoute un méplat de vis de serrage sur tous les angles désignés en plus du plan de référence (0°). SFC, SG= incrément de 1 mm AG=Incrément de 15° © SG<50 Da a umanuel SFCT0-SG3-AG120 D H 6-17 1 18-40 2 50 3 © En cas de combinaison avec d'autres modifications, un écart de ±2° peut se produire.	Ajoute un chemin de cames fendu. UC = incrément de 1mm Dose ourmatel (UC 1) SC+ (21 s.l. UC 2 SC+ (21 s.l. UC 3 SC+ (21 s.l. UC 3 SC 4 (21 s.l. UC 4 SC 4 (21 s.l. UC 5 SC 4 (21 s.l. SC 4 (21 s.l. SC 5 (21 s.l. SC 6 (21 s.l. SC 7 (21 s.l.	Ajoute un méplat. SC-incrément de 1mm ° SC+2s≤. SC=0 ou SC≥1 © In méplat est ajouté sur la face opposée de la modification de logement de clavette. D W 2 2 D W 22 G 5 2 25 22 10 B 7 8 30 27 15 10 8 30 27 15 10 10 8 30 27 15 10 10 8 30 27 15 10 10 8 30 27 15 10 10 8 30 27 15 10 10 8 30 27 15 10 10 8 30 27 15 10 10 8 30 27 15 10 21 10 10 10 10 10 10 10 10 10 10 10 10 10	modifie la tolérance de la dimension L. <u>Cobe summel LKC</u> 1 L<500-→ L±0.05 L≥500-→ L±0.1		