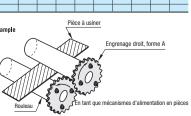

Engrenage droit

Angle de pression 20°, module 1.0 de type à alésage d'arbre configurable


				F	Diam. d			Diam.								mission admissible · m)					_	Prix u						
Référence p	oièce	Nom- bre de	В	En- gre-	d'arbi (Incrémen	re PH7 it de 1mm)	cl Diam. de	de l'em-	G Diam.	н	L	l ₁	l2	M (nomal)	Résista	nce à la tion	А	lésag	e dro	it	Al	ésage tarau	droi dage		Rair		nure tarau	dage
Туре	Module	dents		nages droits	Alésage droit Alésage droit + teraudage	Rainure, rainure + taraudage	référence	bout D	inté- rieur					(normal)	EN 1.1191 équiv.	EN 1.4301 équiv.	GEAHB	GEAHBB	GEAHBG	GEAHS	GEAB	GEABB	GEABG	GEAS	GEAKB	GEAKBB	GEAKBG	GEAKS
		12		К	6~8		12	14	9.5	14				M4	2.47	1.41									-	-	-	-
		*13					13	15	10.5	15		20		141-4	2.83	-				-				-	-	-	-	-
		14		Α	6~10	_	14 15	16 17	11.5 12.5	16 17	30	(B=10)	5		3.20 3.58	1.83 2.04									-	-	-	-
		*16				-	16	18	13.5	18	30	18		M5	3.97	2.04				-				-	-			+ -
		*17		.,	8~12		17	19	14.5	19		(B=12)			4.36	-				-				-	-	-	-	-
		*18		K			18	20	15.5	20					4.76	-				-				-	-	-	-	-
		*19	10		8~10	8N	19	21	16.5	16					5.16	-				-				-				-
		20			6~10	0.11	20	22	17.5						5.57	3.18												+
		21 *22					21	23	18.5 19.5	18					5.98 6.41	3.41		_		-				-				+ -
		*23	12		6~12	8N, 10N	23	25	20.5			10			6.82					-								+ :
ge droit		24			0-12	OIT, IOIT	24	26	21.5	20		(B=10)	4	M4	7.24	4.13												-
forme B, forme K)		*25		i i		İ	25	27	22.5			8			7.68	-				-				-				-
AHBB		26		i i	6~15	8N~12N	26	28	23.5	22		(B=12)			8.12	4.64												
AHBG		*27					27	29	24.5	24					8.55	-				-				-				-
AHS		28			8~17	10N~12N	28	30	25.5						9.02	5.14												+
		*29 30			6~17 8~17	8N~15N	29 30	31 32	26.5	26 27				_	9.42	5.63		_		-				-				-
		32				10N~15N	32	34	29.5		- I	\vdash			10.70	6.11												-
		*34			8~18	TOTE TOTE	34		28					11.69	-				-				-				-	
droit +		35		i i			35	37	32.5						12.13	6.92												$\overline{}$
ige		36		i i		İ	36	38	33.5						12.52	7.14												
B. forme K)		38					38	40	35.5						13.46	7.68												1
B		40 42			8~20	10N~17N	40	42	37.5	30					14.31	8.17												\vdash
BB		*44					42	46	39.5 41.5						15.24 16.18	8.70				-				-				+ -
BG	1.0	45					45	47	42.5						16.66	9.51								_		-		+
S		*46		١. ا			46	48	43.5						17.14	-				-				-				-
		48		Α	8~30	10N~27N	48	50	45.5	44					18.04	10.30												
		50					50	52	47.5		20				18.95	10.82												
		52		В			52	54	49.5						19.87	11.34												4
re		54 55			8~32	10N~28N	54	56	51.5	46					20.80	11.87										_		-
e A)		56					55 56	57 58	52.5 53.5						21.32	12.16 12.46												\vdash
dents ou plus)		58					58	60	55.5						22.69	12.95												\vdash
+taraudage e B)		60	10	i			60	62	57.5			10	5	M5	23.64	13.49												
dents ou plus)		62		i i		İ	62	64	59.5						24.50	13.98												
AKB		64			10~35	12N~31N	64	66	61.5	50					25.47	14.54												
AKBB		65					65	67	62.5	00					25.90	14.78												\vdash
AKBG		66 68					66 68	68 70	63.5 65.5						26.45 27.44	15.10 15.66		_										+
AKS		70					70	72	67.5						28.31	16.16												+
		72			10~39	12N~35N	72	74	69.5	56					29.19													\vdash
		75		i i			75	77	72.5						30.63	17.48												
		80				12N~38N	80	82	77.5						32.98	18.82												
		84					84	86	81.5						34.90	19.92												_
		85 90			10~42	45N 00N	85	87	82.5	00					35.35	20.17												-
		95				15N~38N	90 95	92	87.5 92.5	60					37.74 40.15	21.53		_								_		+-
		96					96	98	93.5						40.15	23.17												+
		100			17~42	17N~38N	100	102	97.5						42.59	24.31												
		110			17~49	17N~45N	110	112	107.5	70					47.11	26.88												
		120					120	122	117.5	70					51.87	29.60												

Su le diamètre d'alésage d'arbre de 9H n'est pas disponible pour le type à alésage de rainure + taraud.

Spécifier 10K comme dim. P si la largeur de la rainure est de 4.0mm (1.8mm de haut) pour le type rainure + taraudage avec alésage d'arbre d'un diam. de 10

pas 1:1496
© Le diamètre d'alésage d'arbre de 6.35 est disponible pour les types à alésage droit et à alésage droit + taraud.

"Les forces de transmission admissibles représes dans le tableau sont des valeurs de référence calculées sous des conditions conseillées. Pour connaître les conditions, voir gar ? 1498.
La largeur de dent calculée est de 10mm.

Type	f
Type	f

				I _	Diam. d	'alésage		<u>.</u> .								transmission					F	rix u	nitaire	9										
Référence pièce		Nom- bre de	В	En- gre- nages	d'arbi (Incrémen	t de 1mm)	cl Diam. de	Diam. de l'em-	G Diam. inté-	н	L	£1	l2	M	(N	issible I·m) e à la flexion	Δ	lésag	je dro	it	Al	ésage tarau	droi dage	t +	Rain	Rair ure+t	nure arau	dage						
Туре	Module	dents		droits	Alésage droit Alésage droit + taraudage	Rainure, rainure + taraudage	référence	bout D	rieur					,	EN 1.1191 équiv.	EN 1.4301 équiv.	GEAHB	GEAHBB	GEAHBG	GEAHS	GEAB	GEABB	GEABG	GEAS	GEAKB	GEAKBB	GEAKBG	GEAKS						
		*14		к	6~10		14	16		16		19			1.92	-				-				-	-	-	-	-						
		15		"			15	17		17		(B=6)			2.15										-	-	-	-						
		16 *17			6~12	-	16 17	18 19		18 19	25	17			2.38	1.36				_				-	-	-	-	-						
		18		Α	8~12		18	20		20		(B=8)			2.86					_				-	-	-	-	-						
		19			0.40		19	21	16.5			()			3.09	1.77																		
		20	6	İ	6~10	8N	20	22	17.5	16					3.34	1.91																		
		21	•				21	23		18					3.59																			
		*23		1 /	6~12	8N. 10N	22	24 25	19.5	-		10			3.85 4.09	2.19				_				-				-						
		24	8		0~12	OIN, TUIN	24	26		20		(B=6)	4	M4	4.09													-						
Alésage droit		25	1		l .		25	27	22.5	_					4.61	2.63																		
(forme A, forme B, forme K)		26			6~15		26	28		22		8 (B=8)			4.87	2.78																		
GEAHBB		*27			0~13	8N~12N		29		24		(5-0)			5.13	-				-				-				-						
GEAHBG		28					28 29	30	25.5						5.41	3.09																		
GEAHS		30	29					30	31	27.5	26					5.65 5.92	3.23																	
		32		-	6~17		32	34	29.5	25					6.42	3.66																		
		*34				011 4511	34	36		28					7.01	-				-				-				-						
		35					35	37	32.5						7.28																			
Alésage droit +		36 *38				8N~15N	36 38	38 40		25					7.51 8.08	4.29				-				-				-						
tarauďage		40					40	42		\dashv					8.59					-				-				-						
(forme B, forme K)		42			8~17		42	44	20.5	_					9.14																			
GEABB		*44		l			44	46	41.5	28					9.71	-				-				-				-						
GEABG	1.0	*45					, 1			45 47 42.5					10.00	-				-				-				-						
GEAS		*46 48		A	8~20		46 48	48 50	43.5 45.5	30					10.29					-				-				-						
		50 *52		В	1	· · ·	· · ·	``	l	''		8N~24N	50	52	47.5		16				11.37	6.49												
					8~25	5 5 10N~24N 5 5	52	54	49.5						11.92	-				-				-				-						
		54					54	56		40					12.48																			
Rainure		55					55	57	52.5						12.79																			
(forme A)		56					56 58	58	53.5						13.10	7.48																		
(19 dents ou plus)		58 60	6				8~30	10N~27N	60	60 55.5 62 57.5	\dashv		10			14.19																		
Rainure+taraudage (forme B)		62	1 ັ				0.00	TOTE - ZITE	62	64				10	_	5 M5	14.70																	
(1011116 D) (1111 dents ou plus)		64					64	66	61.5	44			5	CIVI	15.28	8.72																		
GEAKB		65			10~30	12N~27N	65	67	62.5						15.54	8.87																		
GEAKBB		66 68					66 68	68 70							15.87 16.47	9.06																		
GEAKBG		70					70	72	67.5	\dashv					16.99																			
GEAKS		72			10~35	12N~30N	72	74		48					17.51	9.99																		
		75					75	77	72.5						18.38																			
		80			10~35	12N~31N	80	82	77.5						19.79																			
		84 85					84 85	86 87	81.5 82.5						20.94		-																	
		90					90	92	07.5						22.64																			
		95			45.05	15N~31N	95	97	92.5	50					24.09																			
		96		l	15~35	" "	96	98	93.5						24.36	13.90																		
		100						102	97.5						25.56																			
		110				45N 04N				EA					28.27	16.13	-																	
		120				15N~34N	120	122	117.5	54					31.12	17.76																		

SLe nombre marqué d'un "n'est pas disponible pour le type en acier inoxydable (GEAHS, GEALS et GEAKS). Le diamètre d'alésage d'arbre de 9N n'est pas disponible pour le type à alésage de rainure + taraud.

Spécifier 10K comme dim. P si la largeur de la rainure est de 4.0mm (1.8mm de hauf) pour le type rainure + taraudage avec alésage d'arbre d'un diam. de 10. 25 Pt. 1438 Le diam. d'alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage droit et araudage avec alésage d'arbre d'un diam. de 10. 25 Pt. 1438 Le diam. d'alésage d'arbre 6.35 est disponible pour les types à alésage droit et araudage avec alésage d'arbre d'un diam. de 10. 25 Pt. 1438 Le diam. d'alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage droit et alésage d'arbre d'un diam. de 10. 25 Pt. 1438 Le diam. d'alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage droit et alésage d'arbre d'un diam. de 10. 25 Pt. 1438 Le diam. d'alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage droit et à alésage d'arbre d'un diam. de 10. 25 Pt. 1438 Le diam. d'alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage droit et à alésage droit et à alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage d'arbre 6.35 est disponible pour les types à alésage droit et à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésage d'arbre 6.35 est disponible pour les types à alésag

^{*1} ____.

*Les forces de transmission admissibles reprises dans le tableau sont des valeurs de référence calculées sous des conditions conseillées. Pour connaître les conditions, voir 🙊 P. 1498.

La largeur de dent calculée est de 6mm.

 \P Lorsque la forme d'engrenage n'est pas spécifiée, le nombre de dents $12\sim18$ correspond à la forme K, $19\sim120$ à la forme B.

Alterations Rétérence pièce Rétérence pièce GEAB1.0 - 25 - 12 - 8 - 8 - KC120 GEAB1.0 - 40 - 6 - A - 10 - KTC20 - K4.0										
Modifications	Vis de serrage	Dimension du trou taraudés	Trou étagé	Deux extrémités à épaulement et alésage						
Code	KC90, KC120	TPC	DHL, DHR	WDH						
Spéc.	KC90_aljoute une vis de serrage à la position 90°. KC120_aljoute une vis de serrage à la position 120°. Nonappicate à forma A un apricate au type à alésage doit.	Modifie la dimension du trou taraudé. ©Non applicable à la forme A. ⊗Ne s'applique pas au type à alésage droit. ®£1-£≥-TPC/2 M4 TPC M4 M3 M5 M5 M4 M6	Drang les akkages d'ante en akkages à figuillement. ②Non applicable à la forme K. Z: incrément de 1mm, J: incrément de 0.1mm Doos de command DRI. 225-U4.0 — Popicable uniquement au type à alésage droit. DRI. — DIRI. — DIRI. — DIRI. — DIRI. — Prome B: P+2-226-4, 2-23-3.3 — Frome B: P+2-226-4, 2-33-3.3 — Frome B: P+2-226-4, 2-33-3.3 — F	Down je sklasge d'adre en tous étagle au 2 entremise. Glim a opicable à le forme K. Q. R. S.T. incrément de finni Con de commande WOH-010-R10-S3-T3 (S. Spa) (S. Sp						

Modifications	Orifice fendu latéral	Trou traversant latéral	Trous taraudés latéraux
Code	LFC, LTC	KFC, KTC	QFC, QTC
Spéc.	Usine des trous oblongs sur la surface latérale (30°). (LFC, LTC : incrément de Imm) P+C+4≤LFC(LTC)≤G-C-4	Usine des trous traversants sur la surface latérale. (KFC, KTC : incrément de 1 mm, K : incrément de 0,5 mm) Applicable à la forme A uniquement. • Py-K-4-4-KFC(KTC):G-K-4 Sélection (K3.0-K6.0 Code de commande KFC20-K3.5 KFC **TO** **TO** **Tobal Travella (KFC20-K3.5) **TO** **TO** **Tobal Travella (KFC20-K3.5) **TO** **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **TO** **Tobal Travella (KFC20-K3.5) **Tobal Travella (KFC20	Usinege des trust taraudés sur la surface labérale de l'engrenage (IPC, OTC: incrément de 1 mm). PApplicable à la forme A uniquement. PH-M-4SOFC(OTC)cG-M-SESECTION (INCRÉMENT) (INCRÉMEN